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Abstract. In this note, we construct a series of examples to show that various nonnegative curvature
conditions, including Riemannian curvature and Bismut curvature, are not preserved by the generalized

Ricci flow.
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1. Introduction

The invariant curvature conditions have been shown to be important to the study of Ricci flows.
Hamilton[Ham86] originally proved that the non-negativity of the curvature operator is invariant along
Ricci flow. Böhm-Wilking[BW08] further showed that the 2-non-negativity of the curvature operator can
also be preserved, which means the sum of any two eigenvalues of the curvature operator is non-negative.
Another invariant curvature condition is about isotropic curvature. Positive isotropic curvature (PIC)
condition can be preserved along Ricci flow, which is proved by Hamilton[Ham97] in dimension 4, and
by Brendle-Schoen[BS09] in all dimensions. Brendle-Schoen[BS09] also showed that PIC1 and PIC2
conditions are also invariant along Ricci flow. For precise definition of these conditions, we refer readers
to the Preliminary section. By maximum principle, the infimum of scalar curvature increases along Ricci
flow, hence the non-negativity of scalar curvature is also invariant.

As the most significant and natural generalization of the Ricci flow, the generalized Ricci flow’s
invariant curvature conditions are also important. The generalized Ricci flow, systematically studied by
Streets and Tian [Str08, ST13], first appeared in the mathematical literature in [Str08], emerging from
research on the renormalization group flow in physics [CFMP85, OSW06]. Formally, a one-parameter
family of Riemannian metrics g(t) and a one-parameter family of closed 3-formsH(t) constitute a solution
to the generalized Ricci flow on a manifold Mn if they satisfy the following system of equations:

∂tg = −2Ric+
1

2
H2, ∂tH = −∆dH.

Here, H2(X,Y ) = g(iXH, iY H) denotes a non-negative definite tensor, and ∆d = dd∗+d∗d is the Hodge
Laplacian induced by the time-dependent metric g(t).

In dimension 3, the non-negativity of the curvature operator is equivalent to that of the sectional
curvature, and the 2-non-negativity of the curvature operator is equivalent to that of the Ricci curvature.
So the non-negativity of the sectional curvature, Ricci curvature and scalar curvature are both invariant
along Ricci flow in dimension 3. For higher dimension, there exists examples showing that Ricci flow
does not preserve the non-negativity of sectional curvatures, see [BW07, BK23].

For the generalized Ricci flow, when the dimension is less than or equal to 2, it reduces to the Ricci
flow. For dimensions greater than 2, we first show that, unlike the Ricci flow, various Riemannian
curvature conditions are be preserved by the generalized Ricci flow.

Theorem 1.1 (cf. Theorem 4.1). For any n ⩾ 3, the following curvature conditions are NOT preserved
along generalized Ricci flow:

(1) non-negative curvature operator,
1
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(2) 2-non-negative curvature operator,
(3) non-negative sectional curvature, non-negative Ricci curvature, non-negative scalar curvature,
(4) weakly PIC, weakly PIC1, weakly PIC2.

Hence, we need to search for alternative invariant curvature conditions. For the generalized Ricci
flow, the curvature of the Bismut connection is the most natural choice, as the flow is evolving along the
Bismut-Ricci curvature.

Let (Mn, g) be a Riemannian manifold and H be a closed 3-form. The Bismut connection[Bis89] ∇B

for the triple (Mn, g,H) is the unique connection which is compatible with g and has torsion tensor H.
More generally, we will also consider a family of connections that interpolates between the Levi-Civita
connection and the Bismut connection, following the approach of Gauduchon[Gau84]. More precisely,
we will consider various curvature condition of the connection

∇(s) = (1− s)∇LC + s∇B .

Actually, as an extension of Theorem 1.1, we establish

Theorem 1.2 (cf. Theorem 4.2). For any n ⩾ 3 and s ∈ R, the following curvature conditions for ∇(s)

are NOT preserved along generalized Ricci flow:

(1) non-negative curvature operator,
(2) 2-non-negative curvature operator,
(3) non-negative sectional curvature, non-negative Ricci curvature, non-negative scalar curvature,
(4) weakly PIC, weakly PIC1, weakly PIC2.

In general, the lack of a direct relation between the metric g and the three-form H brings obstructions
to the existence of invariant curvature conditions for generalized Ricci flow. In complex geometry, under
the pluriclosed condition, the generalized Ricci flow coincides with the famous pluriclosed flow intro-
duced by Streets and Tian[ST10], where H represents the torsion of g. Under such condition, it is more
possible to find suitable geometrical invariant conditions. It’s worth noting that Ustinovskiy[Ust19] has
already identified a flow from the same family (Hermitian curvature flow[ST11]) of the pluriclosed flow
that preserves the nonnegative/positive Griffith condition.

Acknowledgements We want to express our sincere gratitude to our advisor, Professor Gang Tian,
for his helpful suggestions and patient guidance. Authors are supported by National Key R&D Program
of China 2020YFA0712800.

2. Preliminary

2.1. Curvature Conditions. We first introduce several curvature conditions as follows. From now on,
we denote the Levi-Civita connection by ∇ for short.

Definition 2.1 (nonnegative curvature operator). Given (Mn, g,D) a Riemannian manifold and any
connection compatible with metric g, the curvature tensor Rm ∈ Γ(T ∗M⊗4) is defined by

RmD(X,Y, Z,W ) := g
(
DXDY Z −DY DXZ −D[X,Y ]Z,W

)
.

The curvature operator RD ∈ Sym2(Λ2TM) is defined by

RD(X ∧ Y,W ∧ Z) := RmD(X,Y, Z,W ).

It’s well defined due to the compatibility with metric g. We say the curvature operator is nonnegative if

RD(α, α) ⩾ 0, for any α ∈ Λ2TM.

Definition 2.2 (2-nonnegative-curvature operator). The curvature operator is called 2-nonnegative if
the sum of any two eigenvalues of the curvature operator is nonnegative.

Definition 2.3 (sectional, Ricci, scalar curvature). Given (Mn, g,D) a Riemannian manifold with a
metric connection, we can define

secD(e1 ∧ e2) := RmD(e1, e2, e2, e1), where e1, e2 are orthonormal,

RicD(X,Y ) := trRmD(X, ·, ·, Y ),

RD := trRicD(·, ·).
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We say the sectional, Ricci, scalar curvature is nonnegative respectively, if

secD(e1 ∧ e2) ⩾ 0, for any orthonormal e1, e2,

RicD(X,X) ⩾ 0, for any X ∈ TM,

RD ⩾ 0.

Definition 2.4 (PIC, PIC1, PIC2). We say (Mn, g,D) has weakly positive isotropic curvature, weakly
PIC for short, if

R1331 +R1441 +R2332 +R2442 − 2R1234 ⩾ 0,

for any orthonormal 4-frames {e1, e2, e3, e4}. Similarly, we say (Mn, g,D) has weakly PIC1, if

R1331 + λ2R1441 +R2332 + λ2R2442 − 2λR1234 ⩾ 0,

for any λ ∈ [−1, 1].
We say (Mn, g,D) has weakly PIC2, if

R1331 + λ2R1441 + µ2R2332 + λ2µ2R2442 − 2λµR1234 ⩾ 0,

for any λ, µ ∈ [−1, 1].

Next we compute the explicit expressions of Bismut curvature.

Proposition 2.5. Given (Mn, g,H), then the ∇(s)-curvature tensor is

R(s)(X,Y, Z,W ) =R(X,Y, Z,W ) +
1

2
s(∇XH)(Y,Z,W )− 1

2
s(∇Y H)(X,Z,W )

+
1

4
s2H

(
X,H(Y,Z)♯,W

)
− 1

4
s2H

(
Y,H(X,Z)♯,W

)
,

hence

R(s)(X,Y, Y,X) =R(X,Y, Y,X)− 1

4
s2H

(
X,Y,H(X,Y )♯

)
.

Proof. By direct computation,

∇(s)
X ∇(s)

Y Z =∇(s)
X

(
∇Y Z +

1

2
sH(Y,Z)♯

)
=∇X

(
∇Y Z +

1

2
sH(Y,Z)♯

)
+

1

2
sH

(
X,

(
∇Y Z +

1

2
sH(Y,Z)♯

))♯

=∇X∇Y Z +
1

2
s∇XH(Y, Z)♯ +

1

2
sH (X,∇Y Z) +

1

4
s2H

(
X,H(Y,Z)♯

)♯
.

R(s)(X,Y, Z) =∇(s)
X ∇(s)

Y Z −∇(s)
Y ∇(s)

X Z −∇(s)
[X,Y ]Z

=R(X,Y, Z) +
1

2
s∇XH(Y, Z)♯ +

1

2
sH (X,∇Y Z) +

1

4
s2H

(
X,H(Y,Z)♯

)♯
− 1

2
s∇Y H(X,Z)♯ − 1

2
sH (Y,∇XZ)− 1

4
s2H

(
Y,H(X,Z)♯

)♯ − 1

2
sH ([X,Y ], Z)

♯

=R(X,Y, Z) +
1

2
s(∇XH)(Y,Z)♯ +

1

4
s2H

(
X,H(Y,Z)♯

)♯
− 1

2
s(∇Y H)(X,Z)♯ − 1

4
s2H

(
Y,H(X,Z)♯

)♯
.

□

Proposition 2.6. Given (Mn, g,H), then the Bismut Ricci curvature is

Ric(s) = Ric−1

4
s2H2 − 1

2
sd∗H,

hence the symmetric part is (
Ric(s)

)sym

= Ric−1

4
s2H2.
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Proof.

Ric(s)(X,Y ) = trR(s)(X, ·, ·, Y )

=Ric(X,Y ) +
1

2
s(∇XH)(ei, ei, Y )− 1

2
s(∇eiH)(X, ei, Y )

+
1

4
s2H

(
X,H(ei, ei)

♯, Y
)
− 1

4
s2H

(
ei, H(X, ei)

♯, Y
)
,

where

1

2
(∇XH)(ei, ei, Y ) = 0,

−1

2
(∇eiH)(X, ei, Y ) =

1

2
(∇eiH)(ei, X, Y ) = −1

2
(d∗H)(X,Y ),

1

4
H

(
X,H(ei, ei)

♯, Y
)
= 0,

−1

4
H

(
ei, H(X, ei)

♯, Y
)
= −1

4
H

(
Y, ei, H(X, ei)

♯
)
= −1

4
H2(X,Y ).

□

2.2. Evolution equation.

Proposition 2.7 ([GFS21], Lemma 5.10). Suppose (Mn, g(t), H(t)) solves the generalized Ricci flow,
then

∂t Ricjk =
(
∇2 Ric+∇2H2

)i
ijk

+Rp
ijk Ric

i
p −Ricpj Ricpk − 1

4R
p
ijk(H

2)ip +
1
4 Ric

p
j (H

2)kp,

where(
∇2 Ric

)i
ijk

=∆Ricjk −Rp
kij Ric

i
p −Ricpk Ricpj ,(

∇2H2
)i
ijk

= 1
4

[
−∆H2

jk −∇j∇k |H|2 +∇j(divH
2)k +∇k(divH

2)j + gqiRp
kij(H

2)pq + gqiRp
kiqH

2
jp

]
.

Corollary 2.8. For (M3, g,H), H = ϕdVg. We have

(∂t −∆)Ricjk = −2Rp
kij Ric

i
p −2Ricpk Ricpj −

1
2

[
(∆ϕ2)gjk +∇j∇kϕ

2
]
.

Proof. In this setting, H2 = 2ϕ2g, |H|2 = 6ϕ2, divH2 = 2∇ϕ2.(
∇2H2

)i
ijk

= 1
4

[
−∆H2

jk −∇j∇k |H|2 +∇j(divH
2)k +∇k(divH

2)j

+gqiRp
kij(H

2)pq + gqiRp
kiqH

2
jp

]
= 1

4

[
−2(∆ϕ2)gjk − 6∇j∇kϕ

2 + 2∇j∇kϕ
2 + 2∇k∇jϕ

2 + 2Ri
kijϕ

2 + 2Rickj ϕ
2
]

= 1
2

[
−(∆ϕ2)gjk −∇j∇kϕ

2
]
.

∂t Ricjk =
(
∇2 Ric+∇2H2

)i
ijk

+Rp
ijk Ric

i
p −Ricpj Ricpk − 1

2R
i
ijkϕ

2 + 1
2 Ricjk ϕ

2

=∆Ricjk −Rp
kij Ric

i
p −Ricpk Ricpj −

1
2

[
(∆ϕ2)gjk +∇j∇kϕ

2
]
+Rp

ijk Ric
i
p −Ricpj Ricpk

=∆Ricjk −2Rp
kij Ric

i
p −2Ricpk Ricpj −

1
2

[
(∆ϕ2)gjk +∇j∇kϕ

2
]
.

□

Proposition 2.9 ([GFS21], Lemma 5.11). For the generalized Ricci flow,

(∂t −∆)R = −1

2
∆|H|2 + 1

2
div divH2 + 2

〈
Ric,Ric−1

4
H2

〉
.

In particular, for (M3, g,H), H = ϕdVg, we have

(∂t −∆)R = −2∆ϕ2 + 2

〈
Ric,Ric−1

2
ϕ2g

〉
.

Proof. It follows that |H|2 = 6ϕ2 and

1

2
div divH2 = div div(ϕ2g) = ∇2

ij(ϕ
2)gij = ∆ϕ2.

□
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Proposition 2.10 ([GFS21], Proposition 4.38). Let M3 be a three-manifold, and (M3, gt, Ht) be a
solution of generalized Ricci flow on M . Define ϕt ∈ C∞(M) satisfying Ht = ϕtdVgt . Then

∂tg = − 2Ric+ϕ2g,

∂tϕ = ∆ϕ+Rϕ− 3
2ϕ

3.

Proposition 2.11. For (M3, g,H), H = ϕdVg and k ∈ R. We have

(∂t −∆)

(
R− 3

2
kϕ2

)
=− 2∆ϕ2 + 3k|∇ϕ|2 + 2

〈
Ric,Ric−1

2
ϕ2g

〉
− 3kϕ2

(
R− 3

2
ϕ2

)
.

So

∂

∂t

(
R− 3

2
kϕ2

)
= ∆

(
R− 3k + 4

2
ϕ2

)
+ 3k|∇ϕ|2 + 2

〈
Ric,Ric−1

2
ϕ2g

〉
− 3kϕ2

(
R− 3

2
ϕ2

)
.

Proof. First by direct computation,

(∂t −∆)ϕ2 = −2|∇ϕ|2 + 2Rϕ2 − 3ϕ4.

Then it follows from combining Proposition 2.9. □

Remark 2.12. For k ⩾ 0, R− 3
2kϕ

2 is the scalar curvature of ∇(
√
k). For k < 0, it’s unknown whether it

represents curvature of some connection.

3. Conformal Modification

We firstly construct g̃ by conformally modifying the standard metric on S3. In dimension 3, the Ricci
curvature of g̃ = e2fgS3 is

R̃ic = Ric−∇2f + df ⊗ df − (∆f + |df |2)g
= −∇2f + df ⊗ df + (1−∆f − |df |2)g.

We first fix a point P ∈ S3, and then fix an normal coordinate (U ;x1, x2, x3) with respect to P .
Moreover, since

Γ̃k
ij = Γk

ij + ∂ifδ
k
j + ∂jfδ

k
i − ∂lfg

lkgij ,

if f(P ) = 0, df(P ) = 0, this coordinate is also the normal coordinate with respect to g̃.

Proposition 3.1. For any 0 < A < 104, there exists a metric g̃ on S3 and a fixed point P ∈ S3 such
that

(1) 1
2 g̃ ⩽ R̃ic ⩽ 2g̃ on S3, R̃ic(P ) = g̃(P ),

(2) ∃r0 > 0, we have R̃ic = g̃ outside Bg̃(P, 2r0) ⊂ U ,

(3) we have
(
1 + 23Ar2 − 20A2r6

)
g̃ ⩽ R̃ic ⩽

(
1 + 33Ar2

)
g̃ on B0(P, 10

−1r0),

(4) ∆̃R̃(P ) = 480A.

Proof. Suppose B0(P, r1) ⊂ U , where B0 ⊂ R3 is the Euclidean ball. We take 0 < r0 < 10−1r1 such that
|(gij)− (δij)| < 10−2, |Γk

ij | ⩽ 10−2 in B0(P, r0) and r0 < 10−4. Let η be the cut-off function such that

supp(η) ⊂ B0(P, r0), η|B0(P, 12 r0)
= 1, |∇η| ⩽ 10r−1

0 , |∇2η| ⩽ 10r−2
0 ,

then we take g̃ = e2fgS3 , where f(x) := −η(x) · Ar4 and r2 = d20(x, P ) = x2
1 + x2

2 + x2
3. By direct

computation, in B0(P,
1
2r0),

∂if = −4Ar2xi, ∂ijf = −8Axixj − 4Ar2δij .

−
(
∇2f

)
ij
= −

(
∂ijf − Γk

ij∂kf
)
= 4A

(
2xixj + r2δij − 2Γk

ijr
2xk

)
⩾ Ar2

(
4− 10−2

)
δij ,

−
(
∇2f

)
ij
⩽ 4Ar2

(
3 + 10−3

)
δij ⩽ Ar2

(
12 + 10−2

)
δij ,

since xixjdx
idxj ⩾ 0. Recall that

R̃ic = −∇2f + df ⊗ df + (1−∆f − |df |2)g,
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where

−∆f = −gij
(
∂ijf − Γk

ij∂kf
)
⩾ (20− 10−2)Ar2,

−∆f ⩽ (20 + 10−2)Ar2,

|df |2 ⩽ (1 + 10−2)δij(4Ar2xi)(4Ar2xj) ⩽ 20A2r6.

So we have

R̃ic ⩾
(
1 + (24− 10−1)Ar2 − 20A2r6

)
g ⩾

(
1 + 23Ar2 − 20A2r6

)
g̃,

R̃ic ⩽
(
1 + (32 + 10−1)Ar2

)
g ⩽

(
1 + 33Ar2

)
g̃,

by df ⊗ df − |df |2g ⩽ 0. Since

R̃ = e−2f
(
3− 4∆f − 2|df |2

)
and f(P ) = |∇f |(P ) = |∇2f |(P ) = |∇3f |(P ) = 0, we have

∆̃R̃ = −4∆∆f(P ) = 4A
∑
i,j

∂ii∂jjr
4(P ) = 480A.

□

4. Proof of the Main Theorem

Theorem 4.1. For any n ⩾ 3, the following curvature conditions are not preserved along generalized
Ricci flow:

(1) non-negative curvature operator,
(2) 2-non-negative curvature operator,
(3) non-negative sectional curvature, non-negative Ricci curvature, non-negative scalar curvature,
(4) weakly PIC, weakly PIC1, weakly PIC2.

Proof. We first consider the case n = 3. Proposition 2.9 shows that

(∂t −∆)R = −2∆ϕ2 + 2

〈
Ric,Ric−1

2
ϕ2g

〉
.

We take (M3, g0) = (T3, gflat) and fix a point P = [03] ∈ T3 = R3/Z3. Let η ∈ C∞(T3) be a cut-off
function such that

supp(η) ⊂ B0(P,
1
2 ), η|B0(P,10−1) = 1.

Then we take ϕ2(x) = η(x) · x2
1. Since we have Rm(x, 0) ≡ 0,

∂

∂t

∣∣∣∣
t=0

R(P ) = −2∆ϕ2(P, 0) = −4 < 0.

Note that R(P, 0) = 0, then we have there exists τ > 0 such that R(P, τ) < 0. For higher dimension, we
take (Mn, g0) = (Tn, gflat). Assume the natural projection π : Tn → T3 maps to the first three factors

and H0 := ϕdVT3 ∈ Λ3(T3), then take H := π∗(H0) ∈ Λ3(Tn). Let P̃ = [0n] ∈ Tn.
Since the initial metric is flat, all the listed curvature conditions are satisfied. Note that R(P, τ) < 0

implies that the conditions (1)(2)(3) fail for g(τ). Since PIC1 and PIC2 are stronger than PIC condi-
tion, it suffices to show g(τ) is not weakly PIC. Assume Ric33(P, τ) < 0, then we take {e1, e2, e3} as
orthonormal basis of TPT3, and choose e4 ∈ (TPT3)⊥. By direct computation,

R1331 +R1441 +R2332 +R2442 − 2R1234 = R1331 +R2332 = Ric33 < 0.

Hence g(τ) is not weakly PIC. □

Even in dimension three, the non-negative Ricci curvature condition is not equivalent to the non-
negative curvature operator condition. Specifically, suppose the eigenvalues of the curvature operator
are k1, k2, and k3. In this case, the eigenvalues of the Ricci operator are λ3 = k1 + k2, λ2 = k1 + k3, and
λ1 = k2 + k3. By estimating the upper and lower bounds of the Ricci curvature and using the relation
ki = 1

2

∑3
j=1 λj − λi, we will use Proposition 3.1 to construct an example satisfying the nonnegative

curvature operator condition.

Theorem 4.2. For any n ⩾ 3 and s ∈ R, the following curvature conditions for ∇(s) are NOT preserved
along generalized Ricci flow:

(1) non-negative curvature operator,
(2) 2-non-negative curvature operator,
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(3) non-negative sectional curvature, non-negative Ricci curvature, non-negative scalar curvature,
(4) weakly PIC, weakly PIC1, weakly PIC2.

Proof. Since Ric(0) = Ric, the case s = 0 follows from Theorem 4.2. Now we assume s ̸= 0. By
Proposition 3.1, we have a metric g̃ on S3 such that(

1 + 23Ar2 − 20A2r6
)
g̃ ⩽ R̃ic ⩽

(
1 + 33Ar2

)
g̃ on B0(P, 10

−1r0),

R̃ic(P ) = g̃(P ) and R̃ic = g̃ outside Bg̃(P, 2r0) ⊂ U .
We can take ϕ ∈ C∞(S3) such that 1

2s
2ϕ2 = 1 + 12Ar2 − 20A2r6 on B0(P, 10

−1r0), and
1
2s

2ϕ2 = 0
outside Bg̃(P, 2r0). Thus we construct g(0) = g̃, H(0) = ϕdV0 such that

0 ⩽ 11Ar2g̃ ⩽
(
Ric(s)

)sym

g(0)
= R̃ic− 1

2
s2ϕ2g̃ ⩽

(
21Ar2 + 20A2r6

)
g̃.

So the ∇(s)-curvature operator satisfies

R(s)
g(0) ⩾

1

2

(
2minRic

(s)
g(0) −maxRic

(s)
g(0)

)
⩾

(
Ar2 − 20A2r6

)
g̃ ⩾

1

2
Ar2g̃ on B0(P, 10

−1r0).

Note that R(s)
g(0) ⩾ 1 outside Bg̃(P, 2r0), it’s easy to modify ϕ such that R(s)

g(0) ⩾ 0 holds on the entire S3.
By Proposition 2.11,

∂

∂t

(
R− 3

2
s2ϕ2

)
= ∆

(
R− 3s2 + 4

2
ϕ2

)
+ 3s2|∇ϕ|2 + 2

〈
Ric,Ric−1

2
ϕ2g

〉
− 3s2ϕ2

(
R− 3

2
ϕ2

)
.

Since

∆

(
1

2
s2ϕ2

)
(P ) = ∆

(
1 + 12Ar2 − 20A2r6

)
(P ) = 72A,

then

∂

∂t

∣∣∣∣
t=0

(
R− 3

2
s2ϕ2

)
(P ) = 480A− 3s2 + 4

s2
· 72A+ 6(1− s−2)− 18

(
1− s−2

)
=

24A(11s2 − 12) + 12(1− s2)

s2

If |s| > 1, we have 1−s2 < 0, then we can take sufficiently small 0 < A << 1 such that ∂t
(
R− 3

2s
2ϕ2

)
(P, 0) <

0. If |s| ⩽ 1, we have 11s2 − 12 ⩽ −1, then we can take A = 102 such that ∂t
(
R− 3

2s
2ϕ2

)
(P, 0) < 0.

Note that
(
R− 3

2s
2ϕ2

)
(P, 0) = 0, so there exists τ > 0, (R − 3

2s
2ϕ2)(P, τ) < 0. Then the conclusion

follows from the same argument in Theorem 4.1. □
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